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The paper demonstrates that, similar to other important models of atmospheric phenomena, beginning with the celebrated Lorenz
model of the Rayleigh-Bénard convection, the Vallis low-order model (LOM) of the El Ñino-Southern Oscillation admits a
gyrostatic form and discusses how gyrostatic LOMs may offer a general framework for deriving effective physically sound models
for atmospheric dynamics and time series analysis. Any such model has a quadratic integral of motion (interpreted as some
form of energy), which eliminates unphysical behaviors that have often plagued atmospheric LOMs and paves way for developing
Hamiltonian LOMs. Restricting LOMs to a gyrostatic form also helps to design LOMs of optimum size and provides a modular
construction of LOMs using gyrostats as elementary building blocks.

1. Introduction

Atmospheric and climate dynamics exhibit complex behavior
reflected in a hierarchy of models from “simple” nonlinear 3-
mode ordinary differential equations (ODEs) to full-fledged
climate-system models involving nonlinear partial differ-
ential equations (PDEs). The need for such hierarchy was
argued by Held [1] who noted that “we typically gain some
understanding of a complex system by relating its behavior
to that of other, especially simpler, systems,” and asked “what
does it mean, after all, to understand a system as complex
as the climate, when we cannot fully understand idealized
nonlinear systems with only a few degrees of freedom?”

An effective way to deal with formidable mathematical
difficulties posed by the PDEs of fluid dynamics via approx-
imating them with finite systems of nonlinear ODEs (the
so-called low-order models (LOMs)) has been established in
pioneering work by Kolmogorov (described in [2, 3]), Lorenz
[4, 5], and Obukhov [6, 7]. LOMs are commonly derived
from the PDEs via the Galerkin method: fluid dynamical
fields are expanded into infinite series in time-independent
basis functions (commonly Fourier modes); then the series
are truncated and substituted into the PDEs yielding a finite

system of ODEs (the LOM) for the time evolution of the
coefficients in the truncated expansions.

Both Lorenz and Obukhov insisted that LOMs should
retain conservation properties of the original PDEs. Arbitrary
truncations in the Galerkin method, however, lead to models
that may lack the fundamental physical properties of the
original equations, such as energy conservation (here and
throughout the paper understood as conservation in the limit
of no damping and forcing). For example, the celebrated
Lorenz model [4] of the two-dimensional Rayleigh-Bénard
convection (RBC)

�̇� = 𝜎 (𝑦 − 𝑥) ,
�̇� = −𝑥𝑧 + 𝑟𝑥 − 𝑦,
�̇� = 𝑥𝑦 − 𝑏𝑧

(1)

has revolutionized understanding of randomness in nature,
but attempts to extend it to larger, more realistic models
of atmospheric dynamics have sometimes led to LOMs
exhibiting unphysical behaviors. The problem was addressed
[8, 9] by developing the so-called gyrostatic LOMs, or G-
models (see Section 2, in particular, the simplest such model
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in a forced regime proved equivalent to the Lorenzmodel (1)),
and via extended Nambu or Lie-Poisson formalisms [10–17].

RBC is the most carefully studied example of nonlinear
systems exhibiting self-organization and transition to chaos.
It also promotes understanding of many real-world fluid
flows in the atmosphere (being the principal mechanism of
mesoscale shallow convection), liquid core of the Earth, and
astrophysics.

The El Ñino-Southern Oscillation (ENSO) is also one
of the most important and longest-studied phenomena as
it affects the global atmospheric circulation and therefore
temperature and precipitation across the globe. What is
demonstrated in this paper is that thewell-knownVallis LOM
[18, 19] of ENSO

�̇� = 𝐵 (𝑇𝑒 − 𝑇𝑤)2Δ𝑥 − 𝐶 (𝑢 − 𝑢∗) ,

�̇�
𝑤
= 𝑢 (𝑇 − 𝑇𝑒)2Δ𝑥 − 𝐴 (𝑇

𝑤
− 𝑇∗) ,

�̇�
𝑒
= 𝑢 (𝑇𝑤 − 𝑇)2Δ𝑥 − 𝐴 (𝑇

𝑒
− 𝑇∗)

(2)

is a G-model as well.
G-models are defined and briefly described in Section 2,

and Section 3 presents the derivation of the G-model form
for the Vallis model and a general discussion of G-models as
a novel tool in atmospheric dynamics and time series analysis,
with conclusions in Section 4.

2. G-Models

The basic G-model is the Volterra gyrostat [20, 21], a classical
system, which admits various mechanical and fluid dynami-
cal interpretations and can be written [22] as
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(3)

where 𝑝 + 𝑞 + 𝑟 = 0. Note that, unlike linear friction terms,
linear terms in (3) (linear gyrostatic terms) do not affect the
conservation of energy nor the conservation of phase space
volume.

The simplest Volterra gyrostat (𝑟 = 𝑏 = 𝑐 = 0 in (3)) in a
forced regime, that is, with added constant forcing and linear
friction,
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(4)

was proved [8] to be equivalent to the Lorenz model (1) (for
this reason we call it the Lorenz gyrostat). In (4) and others
below, separate Volterra gyrostats are shown within vertical
bars, variables are denoted by 𝑋

𝑖
, friction coefficients by 𝛼

𝑖
,

forces by 𝐹 or 𝐹
𝑖
, and the overdot means differentiation with

respect to dimensionless time 𝜏.
It was also found [23, 24] that effective LOMs for

atmospheric circulations and turbulence could be developed
as systems of coupled gyrostats (3). For example, the following
system of two coupled Lorenz gyrostats (4) in a forced regime
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provides an analog of the Lorenz model the three-
dimensional RBC, where the Lorenz gyrostats describe
the dynamics in two perpendicular planes [25].

Finally, similar to the Arnold’s definition of the 𝑛-
dimensional rigid body [26], the 𝑛-dimensional gyrostat was
introduced [8, 9] as the 𝑛-dimensional analog of the Volterra
equations (3); the latter recovered at 𝑛 = 3. It has turned out
that the 6-mode extension of the Lorenz model (1) recently
suggested as a more appropriate minimal model of the two-
dimensional RBC [12] could also be treated in terms of G-
models, namely, as a 4-dimensional gyrostat [27].

G-models are all of the above gyrostatic LOMs: Volterra
gyrostats, coupled Volterra gyrostats, and 𝑛-dimensional
gyrostats. Any G-model has a quadratic integral of motion
(interpreted as some form of energy), which eliminates
unphysical behaviors that have often plagued LOMs obtained
through ad hoc Galerkin truncations. This integral is often a
good candidate for a Hamiltonian function, thus paving way
for developing Hamiltonian LOMs [9], which is important
since the conservative part of various atmospheric models
(the primitive equations, shallow water equations, and quasi-
geostrophic equations) is Hamiltonian (e.g., [28]).

3. Results and Discussion

3.1. G-Model Form of the VallisModel. After the linear change
of variables
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(6)

(2) take the form of gyrostat (3) in a forced regime
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where

𝐹
1
= 1 + 2Δ𝑥𝐴𝑇∗√𝐵𝑇3

,

𝐹
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= 1 − 2Δ𝑥𝐴𝑇∗√𝐵𝑇3

,
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𝛼
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2
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𝛼
3
= 2Δ𝑥𝐶√𝐵𝑇 .

(8)

In comparison to the general form (3), the gyrostat in (7)
has only twononlinear terms, but it has all three pairs of linear
gyrostatic terms unlike the Lorenz gyrostat in (4) that has
only one such pair. In addition, the external force in (7) has
three components versus one in (4).

These differences between the Lorenz model (see (1) and
(4)) and the Vallis model (see (2) and (7)) could perhaps
be clarified using a mechanical interpretation of the original
version of (3) [20, 21],
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(9)

as a rigid body containing an axisymmetric rotor that rotates
with a constant angular velocity about an axis fixed in the
carrier body. In (9) then 𝐼

𝑖
are the principal moments of

inertia of the gyrostat, 𝜔 is the angular velocity of the carrier,
and h is the fixed angular momentum caused by the relative
motion of the rotor (the gyrostatic motion). For the Lorenz
gyrostat (4), this means [22] that the rotor is rotating around
its principal axis 1 (ℎ

2
= ℎ
3
= 0) with a constant external

force directed along this axis, while its ellipsoid of inertia is
the ellipsoid of rotation around another principal axis, axis
3 (𝐼
1
= 𝐼
2
). The latter is also true for the gyrostat in G-

model (7), but in this case both h and F have three nonzero
components.

Of particular importance for using the Vallis model (see
(2) and (7)) in ENSO studies is that, similar to the Lorenz
model (see (1) and (4)), it exhibits both stable and chaotic
behaviors [18, 19, 29].

3.2. G-Models as Effective LOMs for Atmospheric Studies. The
Vallis model augments the list of phenomena described by G-
models. Among them are shell models of turbulence [22, 24],
models of convection in rotating fluid [30, 31], of a barotropic
atmosphere with topography and of the thermal convection
with shear [32], and Hamiltonian LOMs [9]. In fact, we have
found [33] that all physically sound LOMs of 2D RBC that

have appeared in recent publications are equivalent to G-
models, while the LOMs lacking this form exhibit violations
of energy conservation.

A new promising application of G-models is their use as
novel atmospheric time series models [33], thereby utilizing
both their deterministic and probabilistic facets. It was moti-
vated by current problems with handling atmospheric data
and by recent progress in statistical properties of dynamical
systems. In particular, it has been proved that the flow of
the Lorenz model (1) possesses a physical ergodic invariant
probability measure [34] and satisfies the central limit theo-
rem [35, 36]; that is, series of observations on this model may
exhibit statistics of sequences of randomvariables. In contrast
to common models (borrowed from traditional time series
analysis and having little to do with the atmosphere per se),
G-models are derived from the underlying equations, and so
their statistical behavior is in better agreement with reality.

LOMs reveal basic mechanisms and their interplay
through the focus on key elements and retaining only
minimal number of degrees of freedom. Any G-model,
as mentioned above, has a quadratic integral of motion,
which eliminates certain unphysical behaviors, which often
plague other LOMs. Another attractive feature of G-models
is that increasing the order of approximation in the Galerkin
procedure results in adding to the system new gyrostats (or
blocks of gyrostats) whose linear terms represent various
effects important in atmospheric dynamics, such as stratifi-
cation, rotation, or topography. In this way, larger G-models
become even more useful as they provide increasingly better
approximations to the original system. This is because the
dynamics generated by fundamental mathematical models of
fluid flows are in a sense asymptotically finite-dimensional
[37].

For all these reasons, G-models may probably offer a gen-
eral framework for deriving effective LOMs of atmospheric
dynamics and atmospheric time series analysis.

4. Conclusions

We have shown that the Vallis model of ENSO is a G-model
and argued advantages of this type of LOMs. Even with ever-
increasing computer power, LOMs remain important since,
as noted by Smith [38], “although it is unreasonable to expect
solutions to low-dimensional problems to generalize to a
million dimensional spaces, so too it is unlikely that problems
identified in the simplified models will vanish in operational
models.”
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